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Multivariate statistical applications for quantifying 
contribution of seismic data to production 
prediction in the Wolfcamp, Midland Basin

Abstract
A workflow with the objective of quantifying the added value 

of seismic-based information to improved prediction of oil produc-
tion in the Wolfcamp section of the Midland Basin is described. 
A variety of multivariate statistical algorithms are employed in 
the workflow: unsupervised and supervised classification, cate-
gorical-based nonlinear regression, and spatial regression for well 
log estimation. Porosity is estimated from elastic inversion volumes 
within the context of lithotype classification originating with well 
logs. Porosity feet becomes the primary driver in production 
prediction. Two parallel analyses are performed. In the first, only 
well logs are used to predict porosity along all vertical wellbores. 
As a proxy for the impact of well spacing, different minimum 
search distances are investigated for porosity estimation error and 
associated error in prediction of cumulative oil production at six 
months. The second analysis is similar except, along each wellbore, 
porosity is extracted from the seismic porosity volume and then 
used as soft data. These two analysis flows are then applied to 
horizontal wellbores, which have no original porosity logs, to 
compare how well each predicts known cumulative production. 
The incorporation of seismic-based information does show sig-
nificant error reduction.

Introduction
Questions were raised as to whether seismic-based information 

could be used to improve prediction of production in horizontal 
wellbores and, if so, could this improvement be quantified in barrels. 
This study addresses those questions and provides a graphical work-
flow that includes a variety of multivariate statistical algorithms fit 
for different purposes. The workflow’s fundamental premise is that 
improved prediction of porosity by integrating seismic data ultimately 
leads to an improved prediction in production performance.

The seismic control consists of a series of elastic inversion 
volumes from a 250 mi2 survey northwest of Midland. Production 
within this area of interest is primarily from the Spraberry and 
Wolfcamp stratigraphic formations. The Wolfcamp sequence was 
selected for this paper, but similar results were obtained for the 
Spraberry. The final well control within the active seismic traces 
nominally includes 740 vertical wells and 67 horizontal wells 
targeting the Wolfcamp.

Figure 1 shows the study area location, and the areal grid of 
the seismic volumes used in the quantitative analysis is outlined 
by the map of the top of the Wolfcamp section. The background 
paleogeographic map of the Early Permian highlights the vicinity 
of the study area as being east of the Central Basin Platform. The 
complete set of wells, both vertical and horizontal, is also shown.

The following workflow uses a number of multivariate statisti-
cal approaches, each to accomplish a different objective. The 
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approaches include unsupervised classification using k-means 
(MacQueen, 1967), semisupervised classification using a branching 
or hierarchical approach based on a dynamically growing self-
organizing tree (DGSOT) (Luo et al., 2004), supervised classifica-
tion using quadratic discriminant analysis (QDA) (Hastie et al., 
2008), nonlinear regression using alternating conditional expecta-
tion (ACE) (Breiman and Friedman, 1985), and linear regression 
using ordinary kriging (Isaaks and Srivastava, 1989) and collocated 
cokriging (Xu et al., 1992).

Well log classification and porosity distributions
In the study area, the Wolfcamp is a complex of mainly shale 

with interbedded argillaceous carbonates and calcareous sandstones 
with mixed lateral continuity and extent. These facies are inter-
preted as hemipelagic deposits and sediment density-flow deposits 
reworked, locally, by bottom currents (Baumgardner et al., 2014). 
Because of these characteristics, two complications are observed. 
First, as will be seen, porosity distributions are highly dependent 
on lithotype; second, seismic interpretation of laterally discontinu-
ous events is problematic. To perform statistical analyses on 
porosity and to facilitate the seismic interpretation, it is necessary 
to formulate a lithotype classification within the wells based on 
a diverse suite of logs. Ideally, it would have been useful to have 
such a classification scheme from core descriptions for control 
and calibration, but because one wasn’t available, a statistical 
approach was employed to model one.

All vertical wells selected for statistical analysis have a well log 
suite of at least a gamma ray, a density, and a neutron porosity log. 
Most of these also have a deep resistivity log (typically deep induction 
log), and a small number have a P-sonic log. Tops picked and used 
for stratigraphic zonation include the Dean Lime, Upper Wolfcamp, 
Lower Wolfcamp, and the Strawn. Using wells with the full suite 
of these five logs and limiting the analysis from the Base San Andres 
to the Strawn, a classification model for this sequence was generated 
using a semisupervised multivariate approach.

Figure 2 contains an illustration of results from the application 
of DGSOT. This method was selected over other unsupervised 
classification approaches, such as k-means, because it provides user 
guidance and genetic relationships of class to class. There are two 
implementations of the algorithm: fining-downward and coarsening-
upward. These are akin to the way core descriptions are usually 
handled; that is, when in doubt, create a new class as it can be 
possibly lumped subsequently with one or more other classes.

DGSOT includes a “smart” engine for how to grow the tree 
both laterally and vertically. Typical machine learning classification 
methods, such as a neural network and k-means, are used for this 
engine. Figure 2a shows the results of growing the tree to comple-
tion allowing two to four child nodes at each vertical split, where 

1Drillinginfo. https://doi.org/10.1190/tle37030190.1.
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Figure 1. Study area in the Midland Basin with Wolfcamp paleogeography and a map of seismic data outline and vertical and horizontal well control.

Figure 2. Results of hierarchical classification for well logs. (a) Initial run of hierarchical classification allowing four children and minimum class proportion of 5%, 

yielding seven final classes. (b) K-means scree plot for number of classes 2–10. (c) Collapsing hierarchy back to four primary classes from seven in (a). (d) Table of 

centroid locations for final four classes. (e) Application of hierarchical classification model to the FEE “AU” 2 well (API 42-135-39513).
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each child node must contain at least 5% of the total sample count. 
In this case, four splits yielding seven final classes were made. 
The scree plot in Figure 2b is useful for understanding how the 
variance in the data is explained as the number of classes grows. 
A useful measure for variance is the separation index (y-axis in 
the scree plot). It is simply the ratio of the minimum intercentroid 
distance to the maximum intercentroid distance. For a two-class 
model, the minimum and maximum are the same, so the separation 
index is 1.

Often, one might wish to select the number of classes in which 
the scree plot begins to flatten. Five classes are a good selection 
from the plot, but four were selected as most geologically meaning-
ful for the objectives of this study: three primary classes and a 
fourth minor class in the Wolfcamp (low-density, high-resistivity 
zone primarily found within the Spraberry). The splits were 
“lumped back” to the final four (Figure 2c), and the proportion, 
normalized distortion, and location of each class centroid is given 
in Figure 2d.

The application of this model to the Fee “AU” 2 well (API 
42-135-39513), one of seven wells containing all five log types, is 
shown in the log plot of Figure 2e. Better coverage is desired for 
quantitative analyses so another classification algorithm is required, 
and a classification scheme is now available. This allows supervised 
classification to be employed; many methods exist to do this, and 
discriminant analysis was chosen. The sonic log is the most limiting 

log type, so it is the first to be removed. Next, the resistivity log 
is removed, and the sonic log is added back. Finally, both resistivity 
and sonic logs are removed. In each of these steps, all of the 
available samples were used (total count of 16,580). The error 
tables and confusion matrices for all three models are given in 
Figure 3. Application to the appropriate wells and using a log 
alias for the models in the order described now yields 67 wells 
with lithotype logs.

Reviewing the errors in each of the tables reveals that not 
having a sonic log still permits acceptable accuracy in all lithotypes. 
As we will see later, this is most likely because neutron porosity 
and velocity are highly correlated. The lack of a sonic log is 
compensated by having a porosity log. However, the lack of a deep 
resistivity log does cause a significant increase in error rate, espe-
cially in the yellow lithotype. Fortunately, the availability of 
resistivity logs is much higher than the availability of sonic logs. 
The confusion matrices permit us to see what is predicted when 
the model value is wrong. For example, as highlighted by the red 
box in Figure 3, in the case of removing only the sonic log, while 
the model got 3228 predictions correct, there were 292 wrong 
predictions of the yellow lithotype: seven were the olive or tan 
lithotype, 284 were brown, and one was gray.

The two distributions shown in Figure 4 illustrate the impor-
tance of segregating porosity by lithotype. The distribution in 
Figure 4a contains nearly 48,000 neutron porosity samples over 

Figure 4. Distribution of porosity: (a) no segregation by facies and (b) segregated by facies (nonoverlapping stacked distributions).

Figure 3. Error tables and confusion matrices for QDA modeling of well lithotypes given the elimination of P-sonic only, deep resistivity only, and both sonic and resistivity.
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the Dean to Strawn interval from the vertical well control. Sub-
dividing the samples into the four categories as defined from 
classification modeling and then replotting the porosity distribu-
tion but coloring by lithotype is shown in Figure 4b. Note that 
the ranges and shapes of each lithotype are different from consider-
ing all the porosity as a single population. Any statistical modeling 
of porosity from other well log or seismic attributes should include 
the lithotype categorization.

Seismic attributes and horizon interpretation
Interpretation of the seismic amplitude volume for the Base 

San Andres and for the Strawn is relatively straightforward because 
both events are marked by strong acoustic impedance contrasts. 
Although there is an acoustic impedance contrast at the top of 
the First Spraberry, it does not manifest itself as a reliable and 
spatially consistent amplitude event; however, it is relatively 
obvious in the acoustic impedance volume. The Dean, Upper 
Wolfcamp, and Lower Wolfcamp events are much more prob-
lematic in both the amplitude and acoustic impedance volumes. 
Is it possible that one of the other volumes or some combination 
of all of them would assist in interpreting these more spatially 
variable geologic events? If so, given that the volumes are inter-
related by three primary variables — Lamé coefficients (lambda 
and mu) and density (rho) — which volumes do we use to provide 
the greatest amount of information with the least amount of data?

To address these questions, a multicollinearity analysis based 
on forward selection (also known as step up or stepwise) (Whitley 
et al., 2000) was employed to determine the most informative 
attributes. The correlation table in Figure 5 contains many off-
diagonal crosscorrelation coefficients above 0.9 (shown in green). 
These same attribute combinations also have rank crosscorrelations 

above 0.9 (not shown). Therefore, collinearity among multiple 
attributes does exist. Setting the rejection level on the multiple 
crosscorrelation to 0.8 returns three attributes as most informative: 
P-velocity, density, and VP/VS ratio. It is interesting that the analysis 
found three attributes given the inherent interdependencies on 
the three coefficients previously mentioned.

The integration of the three most informative attribute volumes 
was accomplished using k-means classification, a very easy-to-use 
algorithm. The only purpose for this classification step is to provide 
a volume to aid in the interpretation of the horizons not evident on 
the amplitude volume or on any one of the three elastic attribute 
volumes. The only required parameter for k-means classification is 
the number of output classes. Because four classes were retained 
in the DGSOT classification for the well logs, it was decided to 
use the same number. As hoped, the k-means model, when applied, 
produces a very geologically intriguing volume for interpretation. 
Figure 6 shows an inline and crossline of the classification results 
after the application of an additional smoothing step using a simple 
3D mix (triangular weighting) to accentuate spatial continuity of 
class patterns. The color definition of the four classes was determined 
by assigning the colors from the well log classification using the 
same ranking of class proportions. This final volume is extremely 
helpful, along with the original amplitude data (corendered on the 
crossline in Figure 6 for illustration), in interpreting the Wolfcamp 
events (also shown in Figure 6). The interpreted time horizons and 
the well depth picks are used in defining a 3D time-depth model 
(i.e., velocity model) for converting the seismic attribute volumes 
to depth. These depth-converted attributes, extracted along all 
wellbores, both vertical and horizontal, are then used in more rigor-
ous conditioning by the well lithotype and porosity logs for porosity 
estimation from the seismic attributes.

Figure 5. Original pair-wise crosscorrelations of all elastic inversion attributes are shown in the upper table. In the lower left table are the final pair-wise crosscorrelations of the 

remaining three attributes deemed most informative after multicollinearity analysis at a multiple correlation level of 0.8. Lower right shows color legend of correlation ranges.

Acoustic 

impedance Brittleness

Bulk 

modulus Density Lambda rho

P-wave 

modulus

Poisson’s 

ratio

Shear 

impedance

Shear 

modulus

VP/VS 

ratio Velocity P Velocity S

Young’s 

modulus

Acoustic impedance 1.000 0.617 0.902 0.643 0.749 0.990 0.206 0.886 0.883 0.206 0.955 0.870 0.937

Brittleness 0.617 1.000 0.289 0.555 0.026 0.573 -0.576 0.895 0.898 -0.576 0.510 0.890 0.830

Bulk modulus 0.902 0.289 1.000 0.411 0.953 0.935 0.549 0.630 0.641 0.549 0.953 0.649 0.734

Density 0.643 0.555 0.411 1.000 0.279 0.549 -0.082 0.707 0.642 -0.082 0.433 0.556 0.638

Lambda rho 0.749 0.026 0.953 0.279 1.000 0.793 0.759 0.400 0.411 0.759 0.831 0.420 0.522

P-wave modulus 0.990 0.573 0.935 0.549 0.793 1.000 0.261 0.848 0.857 0.261 0.986 0.858 0.918

Poisson’s ratio 0.206 -0.576 0.549 -0.082 0.759 0.261 1.000 -0.212 -0.208 1.000 0.324 -0.199 -0.086

Shear impedance 0.886 0.895 0.630 0.707 0.400 0.848 -0.212 1.000 0.995 -0.212 0.785 0.977 0.984

Shear modulus 0.883 0.898 0.641 0.642 0.411 0.857 -0.208 0.995 1.000 -0.208 0.807 0.993 0.989

VP/VS ratio 0.206 -0.576 0.549 -0.082 0.759 0.261 1.000 -0.212 -0.208 1.000 0.324 -0.199 -0.086

Velocity P 0.955 0.510 0.953 0.433 0.831 0.986 0.324 0.785 0.807 0.324 1.000 0.824 0.874

Velocity S 0.870 0.890 0.649 0.556 0.420 0.858 -0.199 0.977 0.993 -0.199 0.824 1.000 0.983

Young’s modulus 0.937 0.830 0.734 0.638 0.522 0.918 -0.086 0.984 0.989 -0.086 0.874 0.983 1.000

Density VP/VS Ratio Velocity P

Density 1.000 -0.082 0.433

VP/VS ratio -0.082 1.000 0.324

Velocity P 0.433 0.324 1.000

Abs Correlation Color

0.900 - 1.000

0.600 - 0.899

0.000 - 0.599
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Lithotype-dependent porosity estimation  
from seismic attributes

The key to the quantitative analyses from this point forward 
in the workflow is the ability to “extract” from the seismic attribute 
volumes along wellbores, both vertical and horizontal. This is 
made possible by the precise and detailed time-depth conversions 
from the velocity model constructed from the interpreted time 
horizons and corresponding depth picks in the wells. The extracted 
logs from the volumes are sampled at 2.5 ft increments. This 
sampling rate is between the well logs (0.5 ft) and the seismic 
depth samples (5 ft). QDA proved a quick but predictive, tool for 
modeling well lithotypes from the three seismic attributes retained 
from the multicollinearity analysis. Other supervised classification 
tools such as random forest, support vector machine, and neural 
networks might also prove to be good classifiers, and future work 
will be to investigate them. QDA gave predictions exceeding 60% 
accuracy for three of the four classes. The exception is understand-
ably the class that is predominantly defined by high resistivity 
(olive or tan). Fortunately, this lithotype is rare in the Wolfcamp. 

Figure 7 shows the three input volumes and the resulting facies 
model after application of the QDA model.

The next step is to define a lithotype-dependent porosity model 
from the three seismic attributes using a nonlinear regression based 
on the ACE algorithm. This algorithm generates optimal forward 
transformations for each independent variable and an inverse trans-
form for the sum of transformed independent variable values. 
Figure 8 shows the final transforms for P-velocity and for VP/VS 
ratio. Density was found to provide no significant contribution to 
porosity for each lithotype when P-velocity and VP/VS ratio were 
included. Thus, it was removed from the modeling. In all, 225,000 
samples were used in the modeling, and the final prediction cor-
relation is 0.491 with a rank correlation of 0.504. The actual versus 
predicted results are shown in Figure 8a.

Note that the transforms found are petrophysically sound. 
Examination of the inverse transform to porosity (Figure 8b) 
shows that for each lithotype, as the sum of transformed P-velocity 
and transformed VP/VS ratio increases, the prediction of porosity 
increases. The transform of VP/VS ratio (Figure 8c) is linear for 

each lithotype, albeit with different 
slopes, meaning that as VP/VS ratio 
increases, its contribution to porosity 
also increases. This is expected 
(Castagna et al., 1985). Also, the trans-
forms for P-velocity indicate that as 
velocity increases, its contribution to 
porosity decreases (Figure 8d). Again, 
this well-known relationship (Wyllie 
et al., 1956) is expected, and dependence 
upon lithotype is evident.

Using this regression model with 
the seismic lithotype, P-velocity and 
VP/VS ratio volumes yield the porosity 
volume in Figure 8e. The resulting 
porosity trace for each well in the study 
area can be extracted. These traces for 
the vertical wells are displayed in 

Figure 7. Application of the QDA model using the three elastic property volumes and the well lithotype logs results in the seismic-based lithotype volume shown in the lower right.

Figure 6. Unsupervised classification volume aided the interpretation of three spatially discontinuous horizons 

corresponding to three of the well log interpreted picks (Dean, top Wolfcamp, top Lower Wolfcamp). The crossline, 

shown on the left, is bump map corendered with the seismic amplitude to help guide the interpretation as well.
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Figure 8f. The crosscorrelation of these extracted logs over the 
Dean to Strawn interval with the actual neutron logs for the same 
wells is 0.536 with a rank correlation of 0.538.

Porosity estimation using well  
and seismically derived porosity logs

Now that porosity logs derived from seismic data have been 
obtained, the question remains as to whether this information 
improves the prediction of porosity for horizontal wells. To answer 
this question, it is necessary to run parallel estimation analyses 
with and without the seismically derived porosity on the vertical 
wells where actual porosity logs exist. Ordinary kriging and 
collocated cokriging, respectively, are the two regression methods 
used to perform these parallel analyses.

The procedure is to remove the neutron porosity log from a 
given vertical well and then krige an estimated porosity log from 
surrounding vertical wells that have a neutron porosity log. This 
process is repeated for all 740 vertical wells. The process is then 
repeated using the seismically derived porosity log as soft data when 
a porosity log is estimated using collocated cokriging. In both cases, 
an octant search for three wells per octant with a maximum search 
distance of 12,000 ft was used. Further, the variogram model was 
isotropic with a range of 6000 ft. This range was obtained by 
modeling the experimental variable on porosity feet over the 

Wolfcamp interval. This distance also corresponds well with the 
maximum well-spacing distance for vertical wells where there was 
any indication of spatial influence on production. No anisotropy 
was strongly evident, so the variogram was kept isotropic.

One issue that was considered in these estimation analyses 
deals with well spacing. It is a reasonable assumption that when 
conditioning well locations are closer to the estimated well location, 
the influence of the wells might dominate the seismic-based infor-
mation. In other words, how small is the well spacing before the 
seismically derived porosity data are no longer significantly con-
tributing? To address this issue, the minimum search distance was 
varied from 600 to 3000 ft for both estimations, with and without 
the seismic-based porosity. The correlation coefficient used in the 
collocated cokriging is 0.450. This is slightly smaller than both 
the regression modeling results (0.491) and the correlation of the 
application of the model (0.536). It was determined by cross validat-
ing a range of coefficients for each minimum search distance, and 
the coefficients with the smallest mean absolute error were selected. 
Nicely, these coefficients clustered around 0.450. Because collocated 
cokriging is performed in Gaussian space, the correlation could 
be different than in the original data space.

Figure 9 displays the porosity estimation correlation coeffi-
cients for well-only kriging versus well plus seismic-derived 
porosity soft data. At a minimum search distance of 600 ft, the 

Figure 8. The nonlinear regression model with the prediction crossplot, (a) the transformations for the response variable (neutron porosity), (b) and the independent 

variables ([c] VP/VS ratio and [d] P-velocity). The transformations are colored according to the corresponding lithotype. The (e) porosity volume below the model is the 

result of its application to elastic volumes and the seismic lithotype volume. (f) Also shown are the extractions along the vertical wellbores.
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results are almost identical between well-only and including the 
seismic-derived porosities: correlations of 0.814 versus 0.818 and 
error standard deviations of 0.0316 and 0.0312, respectively. As 
the minimum search distance increases, the separation of the two 
curves for both correlation and error standard deviation is seen 
with the collocated cokriging producing better estimation fits 
than well-only kriging. The greatest difference occurs at a 1500 ft 
minimum search distance where the contribution of the seismic-
derived porosity is a reduction in error standard deviation of nearly 
0.2 porosity units. Curiously though, they tend to converge at a 
minimum search distance of 3000 ft.

Application to horizontal wells and production modeling
It has been shown that seismic data provide a better prediction 

of porosity as compared with only using existing porosity logs. 
With that said, how does this translate to a better prediction of 
expected oil production for these wells? To answer that question, 
it is necessary to develop a model of production as a function of 

porosity. Moreover, the model should also consider variables related 
to drilling and completion, because two wells with the same porosity 
profiles may have different production profiles as a consequence of 
those processes in how they were drilled and completed.

As was done for the vertical wells, log traces were extracted 
from the seismic porosity volume for each of the horizontal 
wellbores. These traces were used then as soft data for estimating 
porosity logs by collocated cokriging using the vertical well porosity 
logs as hard data. A second estimated porosity log was created by 
kriging using only the well logs. The same variogram and correla-
tion coefficient as specified in the previous analyses was used. No 
restriction was placed on minimum search distance. Porosity feet 
was then computed from the resulting estimated porosity logs 
over the horizontal section of the wellbore. This scalar for each 
well was included in the production regression modeling.

Cumulative oil production in the first six months was selected 
as the response variable. Six months was considered long enough 
to filter out early production variations in the first couple of months 

Figure 9. Plots of minimum search range versus estimation correlation and error standard deviation for each of the ordinary kriging with well logs only (blue) and 

collocated cokriging of the well logs with the seismically derived porosity as soft (red).

Figure 10. Comparison of prediction of six-month cumulative oil using porosity feet determined from the estimated porosity logs obtained by (a) kriging well porosity logs 

only and (b) cokriging well porosity logs and using seismically derived porosity as soft data. The upper plots show the prediction crossplots, and the lower plots show the 

corresponding distribution and statistics of the prediction errors.
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as compared with three-month cumulative production. Going to 
12 months reduced the number of total wells because many of the 
horizontal wells haven’t been on production that long. Correlation 
between six months and 12 months is 0.940. Selecting six-month 
production gives 67 horizontal wells in the Wolfcamp interval 
within the study area.

Because the sample size of 67 is relatively small, it was decided 
to limit the final number of independent variables in the model 
to avoid possible overfitting. In both linear (principal component 
regression) and nonlinear regression (ACE), three variables con-
sistently ranked as most significant: porosity feet, proppant 
concentration, and proppant per foot. In all cases, porosity feet, 
whether from kriging or from collocated cokriging, was the most 
significant. The ACE models were selected for subsequent use, 
although all transformations were pseudolinear and monotonic, 
because they gave higher estimation fits. All the models show 
that as porosity feet increases, production increases. Similar 
transforms were found for proppant concentration and proppant 
per foot. Interestingly, using porosity feet from the estimated 
porosity logs calculated with the seismic-derived porosity produced 

slightly better predictions of six-month cumulative oil than porosity 
feet from the well-only kriged estimated porosity (0.693 versus 
0.668, respectively). The final predictions for each are given in 
the upper plots of Figure 10.

Previously, it was shown that seismic data can improve the 
prediction of porosity in the interwell space over using just the 
existing porosity well control. Here it has been shown that this 
improvement in porosity prediction translates to an improvement 
in predicting six-month cumulative oil. The mean absolute error 
of prediction for the 67 wells using the seismic-derived porosity 
is 21,200 barrels versus 22,500 barrels using only the well porosity 
logs. The distribution and statistics of the respective errors are 
given in the lower plots of Figure 10.

Workflow summary
The workflow followed in this study is outlined in graphical 

form in Figure 11. At least five different multivariate statistical 
modeling algorithms were employed. K-means classification was 
used to construct a pseudolithotype volume to aid in interpreting 
time horizons within the Dean and Wolfcamp intervals. This 

Figure 11. Graphical representation of the workflow presented in the paper of the various multivariate statistical analyses.



198      THE  LEADING EDGE      March 2018 Special Section: The Permian Basin

volume contains information from the multiple elastic inversion 
volumes (winnowed down in number by multicollinearity analysis). 
Lithotype logs were modeled using the DGSOT hierarchical 
classification approach. Because not all wells had the full suite of 
logs available, subsequent discriminant analysis (QDA) was applied 
on the DGSOT results by iteratively removing the missing log 
types. After depth converting the elastic attribute volumes, a 
QDA model was derived to convert these elastic volumes to a 
seismic lithotype volume. Finally, a lithotype-dependent nonlinear 
regression for porosity using ACE was modeled and applied to 
the seismic attributes and lithotype volumes. The result is a seismi-
cally derived porosity volume.

The next step is to estimate porosity logs on the horizontal 
wellbores using porosity logs from the vertical wells. Extracting 
the seismically derived porosity onto the horizontal wellbores 
gives “soft data” that can be used in collocated cokriging to compute 
porosity logs on the horizontal wellbores. It was shown that there 
is an improvement in estimation error over simply estimating 
porosity from the vertical well logs only using ordinary kriging. 
The last step in the workflow is to compute porosity feet over the 
lateral length and to use this scalar as an independent variable for 
predicting six-month cumulative oil. Additionally, completion 
and wellbore geometry parameters were analyzed for use in the 
final model. Again, the ACE algorithm was selected to perform 
this nonlinear regression.

Conclusions
This study set out to determine whether seismic-based informa-

tion could be used to improve prediction of production in hori-
zontal wellbores and, if so, whether this improvement could be 
quantified in barrels. The improvement in porosity prediction was 
shown to be well-spacing dependent ranging from very little at 
a 600 ft minimum search distance to nearly 0.2 porosity units at 
1500 ft. Multiplying this error reduction over thousands of lateral 
feet can be substantial. The second part of the question regarding 
quantifying the improved porosity prediction into actual improve-
ment in oil production prediction was answered as well. For 
six-month cumulative production, the average improved error in 
prediction was 1300 barrels per well. At US$50 per barrel, this 
equates to US$65,000. Typical all-in (permitting, acquisition, 
and processing) costs for seismic data in the Midland Basin are 
US$75–80 per acre. Presuming six horizontal wells per section, 
this translates to a seismic cost of about US$50,000 to get 
US$390,000 in improved predicted production — a very decent 
nominal return on investment. 
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